Predicting Testing Effort Using Artificial Neural Network

نویسندگان

  • Yogesh Singh
  • Arvinder Kaur
  • Ruchika Malhotra
چکیده

The importance of software quality is becoming a motivating force for the development of techniques like Artificial Neural Network (ANN), which are being used for the design of prediction models of quality attributes. The purpose of this work is to examine the application of ANN for software quality prediction using Object-Oriented (OO) metrics. Testing effort has been predicted using ANN method and independent variables are OO metrics given by Chidamber and Kemerer. The public domain NASA data has been used to find the relationship between OO metrics and testing effort. The model has estimated testing effort within 35 percent of the actual effort in more than 72.54 percent of the classes, and with a MARE of 0.25. The results are quite interesting, however, more similar types of studies are required to be carried out with large data sets in order to establish the acceptability of the model. Keywords— Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network

In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...

متن کامل

EVALUATION OF CONCRETE COMPRESSIVE STRENGTH USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION MODELS

In the present study, two different data-driven models, artificial neural network (ANN) and multiple linear regression (MLR) models, have been developed to predict the 28 days compressive strength of concrete. Seven different parameters namely 3/4 mm sand, 3/8 mm sand, cement content, gravel, maximums size of aggregate, fineness modulus, and water-cement ratio were considered as input variables...

متن کامل

The Prediction of Surface Tension of Ternary Mixtures at Different Temperatures Using Artificial Neural Networks

In this work, artificial neural network (ANN) has been employed to propose a practical model for predicting the surface tension of multi-component mixtures. In order to develop a reliable model based on the ANN, a comprehensive experimental data set including 15 ternary liquid mixtures at different temperatures was employed. These systems consist of 777 data points generally containing hydrocar...

متن کامل

Surface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network

In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...

متن کامل

Artificial Neural Network Modeling for Predicting of some Ion Concentrations in the Karaj River

The water quality of the Karaj River was studied through collecting 2137 experimental data set gained by 20 sampling stations. The data included different parameters such as T (temperature), pH, NTU (turbidity), hardness, TDS (total dissolved solids), EC (electrical conductivity) and basic anion, cation concentrations. In this study a multi-layer perceptron artificial neural network model was d...

متن کامل

Using Artificial Neural Network Modeling in Predicting the Amount of Methyl Violet Dye Absorption by Modified Palm Fiber

Bio-absorbent palm fiber was applied for removal of cationic violet methyl dye from water solution. For this purpose, a solid phase extraction method combined with the artificial neural network (ANN) was used for preconcentration and determination of removal level of violet methyl dye. This method is influenced by factors such as pH, the contact time, the rotation speed, and the adsorbent dosag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008